Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization
نویسندگان
چکیده مقاله:
In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing performance. Hence, this paper has two main contributions. First, two novel parameter-free neighborhood structures named Topological Nearest-Better (TNB) neighborhood and Distance-based Nearest-Better (DNB) neighborhood are proposed in the topological space and decision space, respectively. Second, two proposed neighborhoods are combined with Fuzzy PSO (FPSO) and two novel niching algorithms, called TNB-FPSO and DNB-FPSO, are proposed for solving multimodal optimization problems. It should be noted that we use a zero-order fuzzy system to balance between exploration and exploitation in the proposed algorithms. To evaluate the performance of proposed algorithms, we performed a detailed empirical evaluation on the several standard multimodal benchmark functions. Our results show that DNB-FPSO statistically outperforms the other compared multimodal optimization algorithms.
منابع مشابه
Particle Swarm Optimization with Hybrid Jumps for Multimodal Function Optimization ⋆
Particle Swarm Optimization (PSO) has shown good performance in many optimization problems. However, it easily falls into local optima and suffers from premature convergence on complex multimodal problems. To help trapped particles escape from local minima, a novel hybrid jumps strategy is proposed. The main idea of the new jump strategy is to monitor the changes of previous best particle and t...
متن کاملFuzzy Particle Swarm Optimization Algorithm for a Supplier Clustering Problem
This paper presents a fuzzy decision-making approach to deal with a clustering supplier problem in a supply chain system. During recent years, determining suitable suppliers in the supply chain has become a key strategic consideration. However, the nature of these decisions is usually complex and unstructured. In general, many quantitative and qualitative factors, such as quality, price, and fl...
متن کاملHierarchical Particle Swarm Optimization Algorithm for Multimodal Function Optimization
In this paper, we propose a Hierarchical Particle Swarm Optimization (HPSO) algorithm model for multimodal function optimization. All particles will be classified into several groups, these groups operated at two levels: one level is to find location of global optima clusters with its particles; the other is to exactly distinguish multiple global optima in clusters. By this mechanism, algorithm...
متن کاملAdaptive Particle Swarm Optimization (APSO) for multimodal function optimization
This research paper presents a new evolutionary optimization model based on the particle swarm optimization (PSO) algorithm that incorporates the flocking behavior of a spider. The search space is divided into several segments like the net of a spider. The social information sharing among the swarms are made strong and adaptive. The main focus is on the fitness of the swarms adjusting to the le...
متن کاملCooperative Fuzzy Particle Swarm Optimization
Particle swarm optimization is a population based optimization technique that is based on probability rules. In this technique each particle moves toward their best individual and group experience had occurred. Fundamental problems of standard PSO algorithm are the falling into the trap of local optimum and its low speed of convergence. One approach for solving the above problems is to combine ...
متن کاملVariable Neighborhood Particle Swarm Optimization Algorithm
In this paper, we introduce a hybrid metaheuristic, the Variable Neighborhood Particle Swarm Optimization (VNPSO) algorithm, consisting of a combination of the Variable Neighborhood Search (VNS) and Particle Swarm Optimization(PSO). The proposed VNPSO algorithm is used for solving the multi-objective Flexible Job-shop Scheduling Problems (FJSP). Flexible job-shop scheduling is very important in...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 17 شماره 4
صفحات 7- 24
تاریخ انتشار 2020-08-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023